GROUP THEORY AND PHYSICS

S.STERNBERG

GEORGE PUTNAM PROFESSOR
OF PURE AND APPLIED MATHEMATICS,
HARVARD UNIVERSITY
AND PERMANENT SACKLER FELLOW,
UNIVERSITY OF TEL AVIV.,

CAMBRIDGE

UNIVERSITY PRESS




PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK  http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1994

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1994
Reprinted 1995
First paperback edition 1995
Reprinted 1997, 1999

A catalogue record for this book is available from the British Library

ISBN 0 521 24870 1 hardback
ISBN 0 521 55885 9 paperback

Transferred to digital printing 2002



CONTENTS

Preface ix
1 Basic definitions and examples 1
1.1 Groups: definition and examples 1
1.2 Homomorphisms: the relation between SL(2,C) and the
Lorentz group 6
1.3 The action of a group on a set 12
1.4 Conjugation and conjugacy classes 14
1.5 Applications to crystallography 16
1.6 The topology of SU(2) and SO(3) 21
1.7 Morphisms 24
1.8 The classification of the finite subgroups of SO(3) 27
1.9 The classification of the finite subgroups of O(3) 33
1.10 The icosahedral group and the fullerenes 43
2 Representation theory of finite groups 48
2.1 Definitions, examples, irreducibility 48
2.2 Complete reducibility 52
2.3 Schur’s lemma 55
2.4 Characters and their orthogonality relations 58
2.5 Action on function spaces 60
2.6 The regular representation 64
2.7 Character tables 69
2.8 The representations of the symmetric group 76
3 Molecular vibrations and homogeneous vector bundles 94
3.1 Small oscillations and group theory 94
3.2 Molecular displacements and vector bundles 97
3.3 Induced representations 104

3.4 Principal bundles 112



vi

3.5
3.6

3.7
38
39

3.10
311

3.12

4.1
4.2
43
4.4

4.5
4.6
4.7
4.8
49
4.10
4.11

5
51
5.2
5.3
54
5.5
5.6

5.7
5.8

59
5.10
S.11
5.12
5.13

Contents

Tensor products

Representative operators and quantum mechanical selection

rules
The semiclassical theory of radiation
Semidirect products and their representations

Wigner’s classification of the irreducible representations of the

Poincaré group
Parity

The Mackey theorems on induced representations, with

applications to the symmetric group
Exchange forces and induced representations

Compact groups and Lie groups

Haar measure

The Peter-Weyl theorem

The irreducible representations of SU(2)

The irreducible representations of SO(3) and spherical

harmonics

The hydrogen atom

The periodic table

The shell model of the nucleus

The Clebsch—Gordan coefficients and isospin
Relativistic wave equations

Lie algebras

Representations of su(2)

The irreducible representations of SU(rn)

The representation of GI(V) on the r-fold tensor product
GI(V) spans Homg (T, V, T,V)

Decomposition of T,V into irreducibles

Computational rules

Description of tensors belonging to W,

Representations of GI(V) and Si(V) on U,

Weight vectors

Determination of the irreducible finite-dimensional repre-
sentations of Si(d, C)

Strangeness

The eight-fold way

Quarks

Color and beyond

Where do we stand?

115

116
129
135

143
150

161
168

172
173
177
181

185
190
198
208
213
225
234
238

246
246
248
250
252
254
258
263

266
275
284
288
297
300



Contents. vil

Appendix A The Bravais lattices and the arithmetical crystal

classes 309
A.1 The lattice basis and the primitive cell 309
A.2 The 14 Bravais lattices 311
Appendix B Tensor product 320
Appendix C Integral geometry and the representations of the
symmetric group 327
C.1 Partition pairs 330
C.2 Proof of the main combinatorial lemma 338
C.3 The Littlewood—Richardson rule and Young’s rule 340
C.4 The ring of virtual representations of all the S, 344
C.5 Dimension formulas 348
C.6 The Murnaghan-Nakayama rule 350
C.7 Characters of GI(V) 351
Appendix D Wigner’s theorem on quantum mechanical
symmetries 354
Appendix E Compact groups, Haar measure, and the
Peter—Weyl theorem 359
Appendix F A history of 19th century spectroscopy 382
Appendix G Characters and fixed point formulas for Lie
groups 407
Further reading 424

Index 428



BASIC DEFINITIONS
AND EXAMPLES

1.1 Groups: definition and examples

In this chapter we will introduce the basic mathematical concepts associated with
symmetry: the notion of a group and the action of a group on a set. A group G is a set
on which we are given a binary operation which behaves much like ordinary
multiplication; that is, we are given a map of G x G — G sending the pair (p, q) into pq,
satisfying the associative law, the existence of an identity element e, and the existence of
an inverse. That is, we assume that

e (pq)r = p(gr) for any three elements p,q,r in G;
« there exists an element, ¢, in G such that ep = pe = p for all p in G; and
o for every p in G there isa p~ ! in G such that pp™' =p~'p=e.

Example 1
(a) Let Z, denote the additive group of the integers modulo 4. The elements of this
group are equivalence classes which we shall call e, a,b and ¢

e=1{0, 4 —4, 8 —8 ..}
a={1, 5, =3, 9, -7, ..}
b={2, 6, —2, 10, —6, ...}
c=1{3, 7, —1, 11, =5 ...

The binary operation is addition modulo 4; for example, since 1 + 3 = 4, which equals 0
modulo 4, we have ac = e. The identity element is e. Sinceac=e,a ! =cand ¢~ ' = g;
since bb=¢,b~' =b.

{b) Let G denote the following set of four 2 x 2 real matrices:

(o 1) = 7o) (o 1) = (o)

The binary operation is matrix multiplication; for example,

D - )
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The identity element is the identity matrix

!

and the inverse of each element is its matrix inverse; for example,

(0 =1\ [ 01 .
“ T\ o) T\-10)7¢
(c} Let C, denote the group of rotational symmetries of the square, as follows:

e = identity (rotation through 0)

a = counterclockwise rotation through /2

b = counterclockwise rotation through =

¢ = counterclockwise rotation through 37/2 (clockwise rotation
through 7/2).

Now the group operation is composition of transformations. Clearly the ‘multiplic-
ation table’ is the same as in the preceding two examples; we have considered three
different realizations of the same abstract group, the so-called ‘cyclic group of four
elements’. It is a simple example of a finite group.

Example 2
We turn now to an example of a group which has an infinite number of elements. Let
SL(2, C)denote the set of 2 x 2 matrices of determinant 1 with complex entries. Thus, an
element A of SL(2,C) is given as
()
c d

where a,b, ¢ and d are complex numbers satisfying
ad —bc=1.

Multiplication is the ordinary multiplication of matrices. Since the determinant of the
product of two matrices is the product of their determinants, we see that if 4 and B are
elements of SL(2, C), then so is their product AB. If A is an element of SL(2, C), so that
det A =1, then 4 is invertible and det 47! = 1, so that A~ ! exists and lies in SL(2, C).
The identity element of the group is the identity matrix, i.e.

()

The associative law holds for matrix multiplication and thus SL(2, C) is indeed a group.
Notice that the commutative law does not hold in general for this group.

More generally, we can consider n x n matrices with either real or complex entries.
The collection of real invertible n x n matrices is denoted by GL(n, R). (Notice that here
the condition of invertibility has to be added as a supplemental hypothesis. Not all
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2 x 2 or n x n matrices are invertible, but those that are invertible form a group.) The
group GL(n,R) is called the real general linear group in n variables. We can also
consider the group SL(n, R) consisting of the n x n real matrices of determinant 1. It is
called the real special linear group in n variables. Similarly, we can consider the group
GL(n,C) of all invertible complex n x n matrices or the group SL(n,C) of all n x n
complex matrices of determinant 1.

Example 3

As a third example of a group we can consider the group, O(3), of all orthogonal
transformations in Euclidean three-dimensional space. This is the group of all linear
transformations of three-dimensional space which preserve the Euclidean distance;
that is, those transformations, A, which satisfy

IAv] = liv]

for all vectors vin ordinary three-dimensional space. If we choose an orthonormal basis
for three-dimensional space so that every 4 becomes identified with a matrix, then A4 is
an orthogonal transformation if and only if

AA'=e,

where e denotes the identity matrix in three dimensions. Notice that this equation is the
same as A'=A~'. We see immediately that the product of any two orthogonal
transformations is again orthogonal and that the inverse of any orthogonal transform-
ation exists and is orthogonal. Thus, the collection of all orthogonal transformations
does indeed form a group. Since det A = det 4, it follows from A A" = e that (det 4)> = 1.
Thus, for any orthogonal transformation 4 we have det A = + 1. The collection of
those matrices which are orthogonal, and which satisfy the further condition that det
A= +1, forms a subcollection of O(3), which in itself is a group and which we will
denote by SO(3). We say that SO(3) is a subgroup of O(3). SO(3) is called the special
orthogonal group in three variables. (Similarly, SL(n, C) is a subgroup of GL{(n, C), and
SL(n,R) is a subgroup of GL(n, R).) More generally, if we put the standard Euclidean
scalar product on the n-dimensional space R", we can consider the orthogonal group
O(n) of all orthogonal n x n matrices and the corresponding subgroup SO(n) of those
orthogonal matrices with determinant 1.

Example 4
Let C" denote the n-dimensional complex vector space of all complex n-tuples with its
standard Hermitian scalar product, so that

(Z, W) = ZIW1+ +Zan7

where

z=| : and w=
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Table 1.
1 —1
1 _

1| =

Table 2.
1 %

1 1 w
w o w1
w? w? 1 o)

A complex matrix A is unitary if
(Az, AW) = (z,W)

for all z and w in C". If we denote A (the complex conjugate transpose of 4) by A*, we
may say that A is unitary only if AA* =e. The product of two unitary matrices is
unitary, and the inverse of a unitary matrix is unitary; so the collection of unitary n x n

matrices forms a group which we denote by U(n). Since det A* = det A, we see that
|det A| =1 for A in U(n). The subgroup of U(n) consisting of those matrices which in
addition satisfy det 4 =1 is denoted by SU(n).

Thus, for example, the group SU(2) consists of all 2 x 2 matrices of the form

b
( 4 ) where |a|? +|b|?=1.
—b a

Example 5
We can generalize Examples 1(a), (b) and (c) by replacing the number 4 by any positive
integer. For instance, we can consider the group C, consisting of two elements with the
‘multiplication table’ as in Table 1, which is isomorphic to the additive group of the
integers modulo 2. Similarly, we can think of the three-element group, C,, with
elements 1, w, w? where » = exp 2xi/3 which obey the ‘multiplication table’ shown in
Table 2.

The group C; can be thought of as the additive group of the integers modulo 3, or as
the group of all rotations in the plane which preserve an equilateral triangle centered at
the origin. Thus, w represents rotation through 2z/3 = 120°.

We have already considered the group C, of all rotations preserving a square. It
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3 3 3 2
‘ (12) i j i j (123) i j
—_— —_—

1 | 2 2 1 1 2 3 1
Fig. 1.1

contains four elements, consisting of the identity, rotation through 7/2, rotation
through 7, and rotation through 37/2. We can now recognize that C, is a subgroup of
SO(2), the group of all rotations in the plane. More generally, we can consider C, as the
group of all rotations which preserve a regular polygon with n sides. It will consist of the
identity and all rotations through angles of the form 2nk/n.

Example 6

Let us go back to the equilateral triangle. We can consider the group of all symmetries
of the triangle, not only the rotations. That is, we can allow reflection about
perpendicular bisectors as well. This group has six elements; we will denote it by S;.
Notice that we can find some element in S5 which has the effect of making any desired
permutation of the vertices of the triangle. Let us denote the vertices of the triangle by
1,2 and 3 (Fig. 1.1). Suppose, for example, that (12) denotes the permutation which
interchanges the vertices 1 and 2 but leaves a third vertex, 3, fixed. This permutation can
be achieved by a reflection about the perpendicular bisector of the edge joining 1 to 2.

Similarly, let (123) denote the permutation that sends I into 2, 2 into 3, and 3 into 1.
This can be achieved by rotating the triangle through 120°. The permutation (132),
which sends 1 into 3, 3 into 2, and 2 into 1, is achieved by rotating the triangle through
240°. From this we see that the group of symmetries of an equilateral triangle is the
same as the group of all permutations on three symbols.

Suppose we consider four symbols 1, 2, 3, 4, instead of three. Let s be a one-to-one
map of this four-clement set onto itself. Thus, sis a permutation of this four-element set.
There are four possibilities for s(1): it can be any of the numbers 1, 2, 3, 4. Once we know
what s(1) is, then there are three remaining possibilities for s(2), then two remaining
possibilities for s(3). Finally, s(4) will be completely determined by being the last
remaining number. Thus, there are 4-3-2-1 = 4! = 24 permutations on four letters. The
group S, is the group of all these permutations. Similarly, we define the group S, to be
the group of all permutations; that is, all one-to-one transformations on a set with n
elements.

Example 7
As a final example, we consider the group of all symmetries of the square, denoted by
D,. D, contains eight elements: four rotations, together with four reflections — the
reflections about the two diagonals, and the reflections about the two perpendicular
bisectors (see Fig. 1.2).

Each element of D, permutes the vertices 1, 2, 3, 4 of the square. Thus, we may regard
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4 3, 2 3 4 3 3 4

(12)(34)

—

|
J
I
|
|
4 I
|
i
!

Fig. 1.2

D, asasubgroup of S,, but not every element of S, (which has 24 elements all together)
lies in D,, which has only eight elements. Similarly, the group D,, the group of
symmetries of the regular polygon with n sides, is a subgroup of the group S, of
permutations of n symbols. The reader should check that D, contains 2n elements.

1.2 Homomorphisms: the relation between SL(2,C) and the Lorentz
group

Let G, and G, be groups. Let ¢ be a map from G, to G,. We say that ¢ is a
homomorphism if

olab) = ¢p(a)p(b) for all @ and b in G,.

The notion of homomorphism is central to the study of groups and so we give some
examples. Take G, = Z to be the integers and G, = C,. Define the map ¢ by

P(n) = (—1)".

Recall that group ‘multiplication’ is ordinary addition in Z so that the condition that ¢
be a homomorphism reduces to the assertion that

Pla + b) = P(a)p(b),
i.e that

(=) =(=DH(=1y
which is clearly true. More generally, we can define a homomorphism from Z to C, by
¢(a) = exp2rmia/k = w*, where w equals exp 27ni/k.

This generalizes the construction of Example 1 of the preceding section. Basically, what
the homomorphism ¢ is telling us is that we can regard multiplication in C, as ‘addition
modulo £’ in the integers.

We now want to describe another homomorphism which has many important
physical applications and which will recur frequently in the rest of this book. For this
we need to introduce still another group, the Lorentz group. Let M denote the four-
dimensional space M = R*, with the ‘Lorentz metric’

Ix]?=x3—x?—x3—x% wherex=
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Thus, M is the ordinary Minkowski space of special relativity, where we have chosen
units in which the speed of light is unity. A Lorentz transformation, B, is a linear
transformation of M into itself which preserves the Lorentz metric, i.e. which satisfies

| Bx|?=|x|? forallxin M.

Welet L denote the group of all Lorentz transformations; L is called the Lorentz group.

We now describe a homomorphism from the group SL(2, C) to the group L. For this
purpose we shall identify every point x in M with a two-by-two self-adjoint matrix, as
follows:

Xo
Xo+ X3 Xq—ix, X,
= . represents x =
X;+1X,; Xg~— X3 X,
X3

Notice that

and that
detx=||x)|*=x%—x? — x%—x3.

Indeed, the most general self-adjoint 2 x 2 matrix can be written in this form: if x = x*
is a self-adjoint matrix, then its diagonal entries must be real. We can let x, =itrx =
1 (the sum of the diagonal entries of x) and similarly x, = 1 (the difference of the diagonal
entries of x). Also, we can write the entry in the lower left-hand corner of x as x; + ix,.
Then the entry in the upper right-hand corner will be x, —ix,. In effect, what we have
done is to note that the collection of 2 x 2 self-adjoint matrices is a four-dimensional
real vector space, for which a convenient basis consists of the identity matrix [ =

((1) (1)> and the three so-called ‘Pauli matrices’

(01 (0 —i (10
=\1 o) 27\i o) T\o -1/

We have identified the vector
Xo
X2
X3
with the matrix
X=Xge+ X0, +X,0, 1+ X303.

Now let 4 be any 2 x 2 matrix. We define the action of the matrix A on the self-
adjoint matrix x by

x— AxA*
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and we denote the corresponding action on the vector x by ¢(A)x. Notice that
(AxA*)* = A¥*x*A* = AxA*, so that AxA* is again self-adjoint. Notice also that

det(AxA*) = |det A|* det x.
Therefore, if A is in SI{2,C), then
Tp(Ax 2= Ix ]2,
so that, if A is in SL(2,C), ¢(A) represents a Lorentz transformation. Notice also that
ABx(AB)* = ABxB* A* = A(BxB*)A*
so that
D(AB)X = P(A)P(B)x.

Thus, ¢(AB) = ¢(A)p(B), so that ¢ is a homomorphism. Notice, however, that
d(— A) = ¢(A) so that ¢ is not one-to-one. The matrices A and — A4 correspond to the
same Lorentz transformation.

Suppose now that A belongs to the subgroup SU(2) of SL(2, C). This means that Aisa
unitary matrix, satisfying

AA* =T ie. AIA*=1

Therefore, if e, denotes the vector

o O -

0

which is represented by the 2 x 2 identity matrix I, then

H(A)eg =e,.

If a Lorentz transformation C satisfies Ce, =e,, then C also carries the three-
dimensional space ey, consisting of vectors

0

X1
El

X2

X3

into itself and C is an orthogonal transformation on that three-dimensional space. Put
another way, we can regard O(3) as the subgroup of L consisting precisely of those
Lorentz transformations which satisfy Ce, = e,. Thus, the mapping ¢, when restricted
to SU(2), maps SU(2) into O(3).

For example, let us consider the diagonal matrix

e” 0
et 8)
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The ¢(U,y)x may be computed by matrix multiplication as follows:

e ¥ 0\/xo+x; x;—ix;\/e? O
UgxU 4= i0 : -i0
0 e X{+1X, X — X3 0 ¢
_< Xo + X3 e 2%x, —ix2)>

e, +ixy) Xo — X3

Thus, ¢p(U ) leaves x, and x; unchanged and hence is a rotation about the x, axis. Since
it sends x, + ix, into €¥%x, + ix,), we see that it is a rotation through angle 20 in the
X, X, plane. We have thus shown that

¢(U,) is rotation through angle 20 about the x; axis.

Notice that as 6 ranges from 0 to 7 the corresponding rotation goes from 0 to 27,

making a complete circuit. As 8 ranges from O to 2x, the corresponding rotation goes

through two complete circuits. This is a reflection of the fact that ¢(— A) = p(A).
Similarly, consider the action of the unitary matrix

a

(cosoc —sina

. ) for which V¥=V_,.
sina cOS o

We calculate ¢(V,)x by matrix multiplication as follows:

V<V cosae —sina \/ xo+ X3 X;—ix, coso sina
XV_,=1\ . . . .
U7 A\sina cosa f\x; +ix, xo—x3/\ —sina cosu

We can easily determine the action of ¢(V,) on the vector

o= O QO

by taking xo = x; = x3 =0, so that

0 —i
x=0y=| of

We find that ¢(V,)e, = e,, so that ¢(V,) must be a rotation about the x, axis.
We now determine the action of ¢(V,) on the basis vector

0
0
&=,
1

/

1 0
0 -1

cosoe  —sina \/ 1 0 coso  sino cos 2o sin 2a
VeoiV_o,=| . . = .
sin o cosa /\0 1 —sino  cosa sin2x —cos2a

by taking x =0, = < ) We find
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which corresponds to the vector
0
sin 2a
cos 2a
We conclude that
P(V,)e; = e; cos2a + e, sin 2o

so that V, represents rotation through angle 2« about the x, axis.
As a third example, consider the diagonal matrix with real entries

<r : >
M,= .
0 rt
Since M, = M}, we have

MxM*—(r 0)<x0+x3 x1+ix2><r 0>
r "\0 Tt \x;—ix, xo—x3/\0 7t
_<r2(x0+x3) X, +ix, >

X, —ix, T 23(xg—X3)

Thus the Lorentz transformation ¢(M,) leaves x; and x, alone whereas the x, and
the x5 coordinates are transformed into

X =12 +r " )xo+ 3> —r Hx; and Xy =307 —r"xo + 3 + 17 )x,.
We recall the definition of the hyperbolic functions:
coshu=1(e*+e¢7%) and sinhu=3(e*—e™).

The Lorentz boost in the z direction with parameter ¢, denoted by L,, is defined as
the transformation given by

X =Xy, X; = X5, Xy = (cosht) x, + (sinht)x; and x} = (sinht)x, + (cosh t)x;.
In other words, L? is the Lorentz transformation given by the matrix

cosht 0 O sinht

0 10 0

t 0 01 0
sinht 0 0 cosht

If we set r =¢' then our preceding computation shows that
¢(M) =L,

To summarize: let R} denote rotation through angle 6 about the z axis, let R} denote
rotation through angle 6 about the y axis. We have shown that

$(Ug) =Ry, (V) =R, and $(M,)=L3,
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We might now ask what is the range of ¢: that is, which elements C in the Lorentz
group L are actually of the form ¢(A4) for some A in SL(2, C)? We first show that every A
in SL(2, C) can be continuously joined to the identity by a curve A4, of matrices which all
liein SL(2, C). By a standard theorem of linear algebra we know that any A is conjugate
to an upper triangular matrix, that is

a b
A=B B,

Now simply let g, be any curve of non-zero complex numbers with a; = 1,a, = q, and
let b, be any curve of complex numbers with b, =0 and b, = b. Then

a, b
A=B{ " 7 |B7!
<0 at_1>

is a curve of matrices in SL(2, C), with Ay = I and 4, = A. This demonstrates explicitly
that any 4 in SL(2,C) can be joined to the identity by a continuous curve.

However, not every element of L can be joined to the identity element by a
continuous curve. For instance, there exist elements in L which are 4 x 4 matrices with
negative determinant. As the determinant is a continuous function, there can be no
curve joining an element with a negative determinant to the identity. Furthermore,
every element of L preserves the set of time-like vectors, that is those vectors with
[ x ||? > 0. The set of time-like vectors falls into two components according to whether
X, 1s positive or negative. An element of L can interchange these two components, but
obviously any element of L which can be continuously joined to the identity must
preserve each component. It follows that there are elements in L which cannot lie in the
range of ¢.

We shall denote by L° the proper Lorentz group, the subgroup of L consisting of
those transformations which have positive determinant and which preserve the
forward light cone, that is, which send each component of the set of time-like vectors
into itself. It will emerge from discussions in the course of the next few sections that the
mapping ¢ sends SL(2, C) onto L° and sends the subgroup SU(2) onto the group SO(3)
of rotations in three-space.

The proof goes as follows:

Lemma A
Every proper Lorentz transformation, B, can be written as

B=R,LR,,

where R, and R, are rotations, and L7 is a suitable Lorentz boost in the z direction.

Beo = <x0>,
X

where X = x,e, + X,e, + X3e; and x2 — ||x[|>=1. We can find a rotation § which

Proof We can write
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rotates the vector x to the positive z axis, so
Xo

SBe, =
eo 0

x|

The self-adjoint matrix that corresponds to SBe, is thus

<xo+||XH 0 >
0 xo — [Ix|l

Now choose r so that r2 = (xo + || x||) ™! = x, — | x| . (Remember that

(xo + X1 (xo — Ix[}) = x5 — Ix[|> = 1.)
Then applying M, gives ¢(M,)SBe, = ¢o. Thus ¢(M,)SB is a rotation; call it R,. We
thus have

#(M,)SB =R,
or
B=S"'[¢(M,)1"'R;.

This is the desired decomposition with R, =S~! and L = [¢(M,)]™*.
In Section 1.6 we will prove a theorem due to Euler which asserts that every
rotation R in three-dimensional space can be written as a product

R =R3Ry Ry

that is, as a rotation about the z axis, followed by a rotation about the y axis, followed
by a rotation about the z axis again. (The angles 8, ¢, \ are called the Euler angles
of the rotation R.) Combined with the above lemma, we conclude that every element
of the proper Lorentz group can be written as a product of elements of the form LZ,
R and Rj. But each of these is in the image of ¢. So, granted Euler’s theorem, we
conclude that ¢(SL(2,C)) is all of the proper Lorentz group.

1.3 The action of a group on a set

We now return to some general definitions. Let G be a group and let M be a set. We say
that we have an action of G on M if we are given a mapping of G x M — M sending
(a, m) into am which satisfies the associative law

a(bm) = (ab)m
and
em=m for any min M,

where ¢ is the identity element of the group. Thus, an action of a group G on a set M is
nothing other than a homomorphism from G into the group of all one-to-one
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typical point
(six-element orbit)

exceptional point
(three-element orbit)

Fig. 1.3

transformations of M. Examples from the preceding section include the action of
SL(2,C) (a group) on Minkowski space (a set) and the action of the permutation group
S on the set of vertices of the equilateral triangle.

Let G act on M and let m be a point of M. We can consider the subset of M consisting
of all points of the form am as a ranges over all elements of G. This subset of M is called
the orbit of the point m under the action of G on M and is denoted by G-m. Thus,
G m = {am|aeG}. Thus, for example, in Fig. 1.3 we have marked some orbits of various
points in the triangle under the action of S;. Notice in this example that a ‘typical’ point
x has six points in its orbit, but there exist certain exceptional points @ and x with
three-element orbits and one point O whose orbit consists of itself alone.

As another example, we can consider the group SO(3), whose elements act as
rotations in three-dimensional Euclidean space. The orbit of any point which is not the
origin is the sphere centered at the origin and passing through that point, but the orbit
of the origin is just one point, the origin itself.

Given any point m in M we can consider the subset of G consisting of those a in G
which satisfy am = m. It is clear that if am = m, then a~ 'm = m. Furthermore, if am = m
and bm = m, then (ab)m = m. Thus, the set of such a forms a subgroup of G, which is
called the isotropy group of m and is denoted by G,,. Thus, for example, in the case of
SO(3) acting on three-dimensional space, the isotropy group of any point m # 0 will
consist of those rotations which preserve the point in question, that is the subgroup of
rotations about the axis passing through the point. Thus for each non-zero point m the
group G,, is isomorphic to SO(2) and consists of rotations in the plane perpendicular to
m. Notice that any two such isotropy subgroups G,, are isomorphic as abstract groups,
but are different subgroups of SO(3). The isotropy group of the origin is the entire group
S0O(3).

In the case of S5 acting on the triangle, the isotropy group of a typical point x will
consist of the identity alone. The isotropy group of a point @ with a three-element orbit
will consist of the identity and one reflection. Finally, the isotropy group of the center
point O is the entire group S;. Notice that in all cases the product of the number of
elements in the orbit by the number of elements in the isotropy subgroup is six, which is
the number of elements in S;.

This fact is true in general. Suppose that G is a finite group, and let #G denote the
number of elements in G. Let m be a point of M, and consider the orbit of m under G,
which contains #(G-m) elements. If n is an element of this orbit, then n = am for some a
in G.If n = bm as well, then a~ *b must lie in G,,. This means that to each element n there
are exactly #G,, group elements which map m into n. Therefore, since every element of G
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carries m into some orbit element, we conclude that
#G =#(G-m) #G,,.

If M consists of a single orbit, we say that G acts transitively on M. Any time that we
have a transitive group action of G on M, we can, by choosing a point min M, determine
a partition of G into classes, called cosets, of the form

aG,,={ab for all bin G,}.

Each coset contains the same number of elements as the subgroup G,,. The coset aG,,,
which consists of all group elements that carry the point m into the point am, may be
identified with the point am. Since G acts transitively on M, there is, for each element n
of M, at least one element b of G such that n = bm. We have therefore identified each
point of M with a coset of G. By introducing the notation G/G,, for the set of cosets, we
may identify

M with G/G,,.

As an example of this identification, let M be the set of vertices of an equilateral
triangle and let G be the group S5, which permutes these vertices. We partition G into
cosets by selecting vertex 1 (though 2 or 3 would have served equally well). Then the
coset {¢,(23)}, which is the isotropy group G itself, is identified with vertex 1. The coset
{(123),(12)}, consisting of elements which carry vertex 1 into vertex 2, is identified with
vertex 2, and the coset {(132), (13}} is similarly identified with vertex 3.

This identification of elements of M with cosets of G provides a useful way of
constructing a set M on which G acts transitively. Suppose that H is a subgroup of G.
We can form the cosets aH, each containing #H elements, so that there are #G/#H
cosets in all. We define the action of a group element ¢ on a coset aH by g(aH) = (ga)H.
This construction yields the same result no matter which element of the coset we
choose. If, instead of a, we had chosen a different element @' = ah (where he H, so that @’
and a are in the same coset), then g(a’'H) = (ga')H = (gah)H = (ga)(hH) = (ga)H since hH
is just the subgroup H. Thus we have a rule by which G acts on the space of cosets
M = G/H, and we may label each coset in M by the name of any element of G which lies
in that coset.

As an example of the construction, we construct a two-element set M on which the
group S, acts transitively. We start with the subgroup H = {e,(123), (132)}, which
corresponds to rotational symmetries of an equilateral triangle. The set M consists of
two cosets: {e,(123),(132)}, which we call simply [e], and{(12), (13), (23)}, which we call
[(12)]. The elements of H carry each point of M into itself; the other three elements of S5
carry [¢] into [(12)] and [(12)] into [e].

1.4 Conjugation and conjugacy classes
One set M on which a group G can act is the group G itself. When G acts on itself by left

multiplication, so that a transforms b into ab, then the action is always transitive. For
any group elements ¢ and b there is an element a =cb™ ' such that ab=cb™'b=c.
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Correspondingly, the isotropy subgroup of each group element, G,, consists of the
identity alone, since ab = b implies that a =e.

There is another natural way for a group to act on itself which leads to less trivial
orbits and isotropy subgroups. We say that G acts on itself by conjugation if a acting on
bisaba™'. Conjugation always defines a group action, since the action of ac on b yields

(ac)blac)™ ' = acbc ™ ta" = a(cbe™ Ya ™!,

which is the same as the action (by conjugation) of ¢ followed by the action of a.

The orbits of a group under conjugation are called the conjugacy classes of the group.
Two elements b and ¢ belong to the same conjugacy class if there exists an element
a such that

aba ! =c.

From this equation follow two straightforward consequences:

(1) Theidentity is always a one-element conjugacy class. Proof: aea™ ' = e for any a.

(2) For an Abelian (commutative) group, every element is in a conjugacy class by
itself. Proof: aba™' = aa™'b=b in this case.

The isotropy group G, of an element b under conjugation consists of those elements a
for which aba™! = b. One such element is @ = ¢, another is b (if b # e), and a third is b~ !
(if ™! # b). The number of elements in the subgroup G, of course obeys the general rule
#G = #(G-b) #G, for any finite group. It follows that the number of elements in any
conjugacy class is always a divisor of the number of elements of the group.

For any group of matrices, conjugate group elements B and C satisfy

1

ABA™t=C.

It follows immediately that matrices B and C have the same eigenvalues, and hence the
same determinant and trace.

As an example, we list the conjugacy classes of the group S5. One class consists of the
identity element e alone. The second class consists of the two elements (123) and (132)
(note that (23)(123)(23) ! = (132).) Both these elements represent 120° rotations of an
equilateral triangle. The third conjugacy class consists of the remaining three elements,
(12), (13) and (23), which represent reflections of an equilateral triangle in the
perpendicular bisector of a side.

More generally, for any permutation group, one can show that elements with the
same ‘cycle structure’ always belong to the same conjugacy class*. For example, the
group S, has five conjugacy classes as follows:

o the identity e (one element);

e (123), (132), (124), etc. (eight elements);

e (12), (13), etc. (six elements);

o (12)(34), (13)(24), (14)(23) (three elements);
o (1234), (1243), etc. (six elements).

* See Section 8, Chapter 2.
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1.5 Applications to crystallography

The concept of an orbit of a group action is useful in clarifying the notion of ‘form’ in
crystallography. Ordinary table salt, NaCl, if allowed to crystallize under carefully
controlled conditions, forms cubic crystals. Let C be the cube in R whose vertices are
the points (+ 1, =1, +1). The group of all orthogonal transformations which carry C
into itself is denoted in crystallographic notation by 0,. It is clear that any linear
transformation sending (x, y, z) into (u, v, w), where the u, v, w are permutations of + x,
+y, + z, carries the cube into itself, and that these are the only linear transformations
which preserve the cube. There are eight choices of + and six possible permutations of
x,y,2. The group O, thus contains 48 elements.

NaCl can, however, crystallize in other forms. If a small amount of urea is added,
then small equilateral triangles replace the corners of the cube. These triangles are
congruent, so the crystal is still invariant under O,,. As more urea is added, the triangles
open up into hexagons. Finally, the cube faces disappear altogether and we have an
octahedron. (See Figs. 1.4(a)—(d).)

The group preserving the cube is thus the same as the group of the octahedron (which
is the reason for the notation 0,).

The crystal whose appearance is as in the figure is said to show faces of two different
Jorms; the eight triangular faces constitute one form whereas the six octagonal faces
(modifications of the original cube faces) constitute the other form. The relative size of
the various forms is called the habit of the crystal.

Crystals that are grown under careful conditions will develop into cubes or
octahedra or other regular shapes. But if you go and pick up a crystal in the field, it will
most likely have a rather irregular shape. Nevertheless, it does exhibit a symmetry, but
in a more subtle sense. The first major discovery, by Nicolas Steno (1669) and Christian
Huyghens in the field of crystallography is the celebrated ‘law of corresponding angles’
that says that the angles between ‘corresponding faces” on all crystals of the same
substance are equal. Put another way, suppose that we draw the normals to each of
the faces, so as to get a set of points, on the unit sphere. Then (up to a rotation of
the sphere) this set of points is the same for crystals of the same substance, although
some of the points may be missing in a given crystal (i.e. some faces do not make
their appearance). Furthermore, if a substance does (under controlled conditions)

)
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Fig. 1.4
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crystallize into a regular body, then the set of normals of any crystal of that substance
is invariant under the group of symmetries of the body. For example, suppose a
substance crystallizes on occasion as a cube. Then the set of normals of any crystal
of this substance will be invariant under O,. Steno’s ‘law’ appears in a caption to a
figure in the appendix to his book entitled De Solido intra Solidum Naturaliter
Contento (Florence, 1669).

The concept of an orbit of a group action allows us to explain in more detail what the
crystallographers mean by the concept of the form’ of a crystal. As we have already
indicated, the observed symmetry of a crystal is best expressed in terms of directions.
The law of the constancy of corresponding angles says that it is the coliection of normal
directions to the faces that is invariant (up to an overall rotation). These directions are
the same for all crystals of the same substance, even though the outward appearance of
the crystal might be quite irregular. We can consider these directions as points on the
unit sphere. The group of symmetries of the crystal acts on this set of points. An orbit of
the symmetry group acting on this set of directions is what is called a form of the crystal.
To quote from a standard textbook (Phillips, An Introduction to Crystallography, p. 9):
‘A rigid definition of a form is “the assemblage of faces necessitated by the symmetry
when one face is given.”’

Let us describe the possible types of orbits for the cubic group, G = 0,. We know that
the number of elements in an orbit must divide the order of the group, which in this case
is 48. It is clear that if we pick a generic point (x, y, z), with no two coordinates equal
in absolute value and no coordinate zero, then the isotropy group G, , ., consists
only of the identity, and thus the orbit of this point contains the full 48 elements.
The isotropy group of a point of the form (x, x,z), |x| # |z|, x #0, z #0, consists of
the two-element permutation group — the group of transformations which permute
the first two variables. The orbit through (x, x, z) thus contains 24 elements. Similarly,
the orbit through (x, x,0) contains 12 elements. The orbit through (x, x, x) contains
eight elements and the orbit through (1, 0,0) six elements. This last orbit corresponds
to the set of faces of a cube —it is called the cubic form of the crystal. The eight-
element orbit corresponds to the set of faces of the octahedron it is calied the
octahedral form.

The crystallographers use the notation x for —x. Thus, the cubic form consists of
the six elements

(1,0,0), (1,0,0), (0,1,0), (0,1,0), (0,0,1), (0,0,1).

The octahedral orbit is the orbit of the point (1,1, 1). (We write (1, 1, 1) instead of
(1/3%,1/3%,1/3%), since we are really interested in the direction. We can always
remember to normalize if we want the points to lie on the unit sphere.) The octahedral
form thus consists of the eight points

(1,11, (1,1,1, 1,11, 1,110, 11,0, QLD (LY, (1,11

It is convenient to have a way of representing points of the sphere on the plane of the
paper. A standard convention is to use stereographic projections. If we project from the
south pole, as shown in Fig. 1.5, all points on the upper hemisphere are mapped into the



